Ecolmpact

Package Compare Report

Tuesday, 2023-07-25 11:48:25 AM

Goal & Scope

This report shows the environmental impact calculated using a screening Life Cycle Analysis. The analysis below can include the environmental impact for all life cycle phases in a Cradle-to-Grave analysis.

Analysis

Data Version: COMPASS 2023.2 User: katie.grote@trayak.com Company: Trayak Inc Number of BOMs in Analysis: 7 Status: Open Type: Customer Material Scrap Rates considered: No

Functional Unit: 1,000,000 item count

The environmental impact calculated in this analysis is for the packaging required to deliver the amount of product described by the functional unit. This includes the number of primary, secondary and tertiary packages shown below. These package numbers were calculated based on the pallet configuration modeled in the BOM. If the secondary and tertiary package data is not entered their environmental impact cannot be calculated.The analysis below can include the environmental impact for all life cycle phases in a Cradle-to-Grave analysis.

Package Name	# of Primary Packages	# of Secondary Packages	# of Tertiary Packages
Paper Can SL-PL- 100mi	1,000,000	0	0
Paper Can SR-PI- 100mi	1,000,000	0	0
Paper Can SR-PI- 1000mi	1,000,000	0	0
Paper Can SR-PL- 100mi	1,000,000	0	0
Paper Can SR-PL- 1000mi	1,000,000	0	0
Paper Can SL-PR- 100mi	1,000,000	0	0
Paper Can SL-PR- 1000mi	1,000,000	0	0

Note: This COMPASS report uses life cycle inventory (LCI) data that represents an industry average for materials, manufacturing processes, and end of life impacts. The Life Cycle Analysis (LCA) in this report can be used for directional guidance in internal decision making and understanding trade-offs. COMPASS follows the guidelines of ISO 14040 in determining and documenting the scope, assumptions, consistent boundary conditions and data sources. According to ISO 14040, LCA results should not be used to make comparative assertions between competitive products to be disclosed to the public without first conducting a third party critical review.

Assumptions & Comments

All packaging/product components required to achieve the LCA goal are added to the BOM and included in the analysis : Yes

All significant manufacturing processes are included for the components of the BOM : Yes

Any components or manufacturing steps that are omitted are documented along with the reason for omission. : Yes

All relevant transportation modes & distances are included in the analysis. : Yes

Any proxies used for any of the data are documented. : Yes

All end-of-life rates for recycling, landfill, incineration etc. are appropriate for the selected end-of-life region. Any changes made are documented. : Yes

Total Environmental Impact

This section shows the total impact for each of the selected indicators used for the Life Cycle Analysis. Each indicator is composed of the material extraction, manufacturing, transportation, end of life, and use phase impacts. This will allow you to determine which life cycle phase has the greatest impact.

Note: The material phase measures the environmental footprint of extracting and processing materials. The manufacturing phase calculates the impact of the manufacturing or conversion processes that companies use to add value and create the package or product. Use phase includes the environmental impact during the useful life of the package/product. Typically, the use phase impact is due to the consumption of resources like electricity, fuel, or other consumables. For the transportation phase, the impact is calculated based on the mode of transportation (road, rail, air, sea) as well as the distances travelled. The end of life impact calculation incorporates the most likely fate of the product/package and its components based on typical curbside municipal waste management. Typical percentage rates for region based recycling, incineration, and landfill are used to calculate the impacts.

Fossil Fuel Use (GJ deprived)

This indicator considers the total quantity of fossil fuel consumed throughout the life cycle reported in megajoules (MJ) equivalents deprived/kg dissipated, which is based on an extraction-consumption-competition-adaptation approach. This indicator uses the Impact World+ method, uses the primary energy content, and assumes fossil resources mainly used for energy purposes. Fossil fuels include coal, petroleum, and natural gas.

Paper Can SL-PL- 100mi	Material 1,119.9 [°] (95.22%)	Manufacturing 13.53 (1.15%)	Transportation 21.2 (1.8%)	EndOfLife 21.46 (1.82%)	UsePhase 0 (0%)	Total 1,176.17
Paper Can SR-Pl-	Material 1,119.9 [°]	Manufacturing 13.53 (1.16%)	Transportation 21.2	EndOfLife 7.75	UsePhase 0	Total
100mi	(96.35%)		(1.82%)	(0.6667%)	(0%)	1,162.46
Paper Can SR-PI-	Material 1,119.9 ⁻	Manufacturing 13.53	Transportation 212.04	EndOfLife 7.75	UsePhase 0	Total
1000mi	(82.76%)	(0.9998%)	(15.67%)	(0.5727%)	(0%)	1,353.3
Paper Can SR-PL- 100mi	Material 1,119.9 [°] (95.87%)	Manufacturing 13.53 (1.16%)	Transportation 21.2 (1.82%)	EndOfLife 13.51 (1.16%)	UsePhase 0 (0%)	Total 1,168.22
Paper Can SR-PL-	Material 1,119.9 [°]	Manufacturing 13.53	Transportation 212.04	EndOfLife 13.51	UsePhase 0	Total
1000mi	(82.41%)	(0.9955%)	(15.6%)	(0.9939%)	(0%)	1,359.06
Paper Can SL-PR- 100mi	Material 1,119.9 [°] (96.27%)	Manufacturing 13.53 (1.16%)	Transportation 21.2 (1.82%)	EndOfLife 8.64 (0.743%)	UsePhase 0 (0%)	Total 1,163.35
Paper Can SL-PR-	Material 1,119.9 [°]	Manufacturing 13.53	Transportation 212.04	EndOfLife 8.64	UsePhase 0	Total
1000mi	(82.7%)	(0.9991%)	(15.66%)	(0.6383%)	(0%)	1,354.19

Simple Indicators

Computed based on the US Region

Рар	er Can SR-P	Pl-100mi	Рар	er	Can	SR-PI-	Pap	per Can SR-	PL-100mi	Рар	per	Can	SR-PL-	Pap	oer Can SL-P	R-100mi	Рар	er	Can	SL-PR-
13.7	71 GJ depriv	/ed	100	0mi			7.9	6 GJ depriv	ed	100	00mi			12.	82 GJ depriv	/ed	100	0mi		
•	2.24 Barrels	of Oil	177	.13 G	J depri	ved	•	1.3 Barrels	of Oil	182	2.89 G	J depri	ved		2.1 Barrels	of Oil	178	.02 G	J depr	ived
	0.3663	Average	•	28.9	5 Barrel	s of Oil		0.2125	Average	•	29.89	9 Barrel	s of Oil		0.3424	Average	•	29.1	Barrels	of Oil
	Homes	Powered		4.73	1	Average		Homes	Powered		4.89		Average		Homes	Powered		4.76		Average
	Yearly		♠	Hom	es F	owered		Yearly		♠	Hom	es F	Powered		Yearly			Hom	es l	Powered
				Yearl	у						Yearly	у						Yearly	/	

GWP (ton CO₂ eq.)

Global Warming Potential (GWP) considers the total quantity of greenhouse gasses (GHG) emitted throughout the life cycle reported in kilograms of CO2 equivalents. This calculation follows the IPCC Sixth Assessment Report (AR6) 2021 100a w/o CO2 Uptake method and considers climate feedback loops. It considers global warming potential for a 100-year timeframe.

Paper Can SL-PL-	Material 98.77	Manufacturing 0.7767	Transportation 1.39 (1.01%)	EndOfLife 36.42	UsePhase 0	Total
100mi	(71.91%)	(0.5655%)		(26.52%)	(0%)	137.36
Paper Can SR-Pl-	Material 98.77	Manufacturing 0.7767	Transportation 1.39 (1.32%)	EndOfLife 4.04	UsePhase 0	Total
100mi	(94.09%)	(0.7399%)		(3.85%)	(0%)	104.98
Paper Can SR-Pl-	Material 98.77	Manufacturing 0.7767	Transportation 13.89	EndOfLife 4.04	UsePhase 0	Total
1000mi	(84.08%)	(0.6612%)	(11.83%)	(3.44%)	(0%)	117.48
Paper Can SR-PL-	Material 98.77	Manufacturing 0.7767	Transportation 1.39 (1.01%)	EndOfLife 36.05	UsePhase 0	Total
100mi	(72.1%)	(0.567%)		(26.31%)	(0%)	136.98
Paper Can SR-PL-	Material 98.77	Manufacturing 0.7767	Transportation 13.89	EndOfLife 36.05	UsePhase 0	Total
1000mi	(66.07%)	(0.5196%)	(9.29%)	(24.11%)	(0%)	149.49
Paper Can SL-PR-	Material 98.77	Manufacturing 0.7767	Transportation 1.39	EndOfLife 0.6829	UsePhase 0	Total
100mi	(97.2%)	(0.7643%)	(1.37%)	(0.672%)	(0%)	101.62
Paper Can SL-PR-	Material 98.77	Manufacturing 0.7767	Transportation 13.89 (12.17%)	EndOfLife 0.6829	UsePhase 0	Total
1000mi	(86.55%)	(0.6806%)		(0.5984%)	(0%)	114.12

Simple Indicators

Computed based on the US Region

Pap	oer Can SR-	PI-100mi	Paper	Can	SR-PI-	Paper	Can	SR-PL-	Pap	oer C	Can	SR-PL-	Рар	er Can SL-	PR-100mi	Рар	er (Can	SL-PR-
32.	38 ton CO ₂	eq.	1000m	ni		100mi			100	00mi			35.7	74 ton CO ₂	eq.	100	0mi		
	6.93	Passenger	19.88	ton CO	₂ eq.	0.3757	ton C	O ₂ eq.	12.	13 ton	co ₂	eq.		7.65	Passenger	23.2	4 ton	CO ₂ (eq.
æ	Vehicles	Driven	4.2	26	Passenger	0.0	805	Passenger		2.6	I	Passenger	æ	Vehicles	Driven		4.98	P	assenger
	Yearly		👄 Ve	hicles	Driven	👄 Vel	nicles	Driven	æ	• Vehicle	es	Driven		Yearly		A	Vehicle	es	Driven
	127,726.9	5	Ye	arly		Yea	arly			Yearly				140,968.2	7		Yearly		
	Kilometers	Driven by	78	,410.1	2	1,4	81.97			47,834	4.86			Kilometers	Driven by		91,65 [°]	1.44	
(•)	Passenger	Vehicles	C Kil	ometei	rs Driven	C Kil	ometei	rs Driven	a	Kilome	eters	Driven	(•)	Passenger	Vehicles		Kilome	eters	Driven
	Yearly		by		Passenger	by		Passenger	(•)	by	I	Passenger		Yearly		(•)	by	P	assenger
۵	13,792.81	Liters of	Ve	hicles `	/early	Ve	hicles \	Yearly		Vehicle	es Ye	arly	Da	15,222.69	Liters of		Vehicl	es Yea	arly
U	Gasoline C	Consumed	هم 8,4	467.25	Liters of	16	0.03	Liters of	۵	5,165.	.53	Liters of	U	Gasoline C	Consumed	۵	9,897.	. 13 l	iters of
	839.11	Tree	Ga	soline	Consumed	🔡 Ga	soline		U	Gasoli	ne C	onsumed		926.1 Tree	e Seedlings	U	Gasoli	ne Co	onsumed
Y	Seedlings	Grown for	51	5.12	Tree	Co	nsume	ed		314.2	5	Tree	-	Grown for	10 Years		602.1 [°]	1	Tree
	10 Years		Y Se	edlings	Grown	9.7	4 Tree	e Seedlings	Y	Seedli	ngs	Grown		17.02 He	ectares of	Y	Seedli	ngs	Grown
*	15.42 He	ectares of	foi	r 10 Yea	ars	🗕 Gro	own fo	r 10 Years		for 10	Year	S	-	Forests Ye	arly		for 10	Years	i
-	Forests Yea	arly																	

Water Consumption (with Scarcity) (m³ world-eq)

This indicator considers the relative available water remaining per area in a watershed after the demand of humans, aquatic ecosystems, and manufacturing process has been met, compared to the world average. The AWARE method is used to calculate the water scarcity footprint, which looks at the potential to deprive another freshwater user by consuming freshwater in a given region. The water scarcity footprint is the water consumption inventory multiplied by a characterization factor, which is based on the availability and demand of freshwater in a given region. The characterization factors have a range of 0.1 to 100, with higher numbers associated with more water-scarce regions, and are dimensionless (m3 world eq./m3). The water scarcity footprint results are typically reported in m3 world-eq. but may be reported in liters world-eq. if there is a small quantity of water being considered in the analysis by EcoImpact-COMPASS.

Paper Can SL-PL- 100mi	Material 30,38 (92.3%)	.65 Manufacturing (5.39%)	1,775.29	Transportation (0.2145%)	70.62	EndOfLife (2.1%)	690.76	UsePhase (0%)	0	Total 32,923.32
Paper Can SR-PI- 100mi	Material 30,38 (92.58%)	.65 Manufacturing (5.41%)	1,775.29	Transportation (0.2152%)	70.62	EndOfLife (1.8%)	590.61	UsePhase (0%)	0	Total 32,823.18
Paper Can SR-PI- 1000mi	Material 30,38 (90.82%)	.65 Manufacturing (5.31%)	1,775.29	Transportation (2.11%)	706.23	EndOfLife (1.77%)	590.61	UsePhase (0%)	0	Total 33,458.78
Paper Can SR-PL- 100mi	Material 30,38 (93.1%)	.65 Manufacturing (5.44%)	1,775.29	Transportation (0.2164%)	70.62	EndOfLife (1.24%)	405.95	UsePhase (0%)	0	Total 32,638.51
Paper Can SR-PL- 1000mi	Material 30,38 (91.32%)	.65 Manufacturing (5.34%)	1,775.29	Transportation (2.12%)	706.23	EndOfLife (1.22%)	405.95	UsePhase (0%)	0	Total 33,274.12
Paper Can SL-PR- 100mi	Material 30,38 (93.38%)	.65 Manufacturing (5.46%)	1,775.29	Transportation (0.217%)	70.62	EndOfLife (0.9509%)	309.44	UsePhase (0%)	0	Total 32,542.01
Paper Can SL-PR- 1000mi	Material 30,38 (91.59%)	.65 Manufacturing (5.35%)	1,775.29	Transportation (2.13%)	706.23	EndOfLife (0.9327%)	309.44	UsePhase (0%)	0	Total 33,177.61

Water Consumption (with Scarcity) (m3 world-eq) by Life Cycle Phases

Simple Indicators

Computed based on the US Region

Pap	per Ca	n	SR-PI-	Pap	oer Can	SR-PI-	Pap	oer Can	SR-PL-	Pap	per Can	SR-PL-	Рар	er Can SL-F	PR-100mi	Pap	per Ca	n	SL-PR-
100	Dmi			100)0mi		100)mi		100	00mi		381	.32 m ³ wor	ld-eq	100	00mi		
100).15 m ³ v	vorl	d-eq	535	5.46 m ³ wor	ld-eq	284	4.81 m ³ wo	orld-eq	350	0.8 m ³ wor	ld-eq		100,744.29	Gallons	254	4.29 m ³ v	vorlo	d-eq
	26,459.	32	Gallons		141,467.92	Gallons		75,246.89	Gallons		92,680.35	Gallons	•	of Water			67,182.	95	Gallons
	of Wate	r		•	of Water		•	of Water		-	of Water		_1	5,857.41	Average		of Wate	r	
	1,538.3	8	Average	_1	8,225.13	Average	<u> </u>	4,374.95	Average	_1	5,388.56	Average	P	Showers		4	ງ <mark>3,906.1</mark>	1 /	Average
ç	Showers	5		Ч	Showers		Ч	Showers		ç	Showers			16.05	People	Ч	Shower	5	
1.07	4.21		People		22.53	People	1.07	11.99	People		14.76	People	Ĭ	Showering	Daily for	1.07	10.7		People
Ĭ	Showeri	ng [Daily for	Ĭ	Showering	Daily for	Ĭ	Showering	g Daily for	Ĭ	Showering	Daily for		a Year		Ĭ	Shower	ing D	aily for
	a Year				a Year			a Year			a Year			0.1525	Olympic		a Year		
	0.0401	(Olympic		0.2142	Olympic		0.1139	Olympic		0.1403	Olympic	¥	Sized S	Swimming		0.1017	(Dlympic
	Sized	Sw	/imming		Sized S	Swimming		Sized	Swimming		Sized S	Swimming		Pools			Sized	Sw	imming

E Pools

🗜 Pools

 Pools

Freshwater Eutrophication (kg PO₄ eq.)

Eutrophication is the abnormal increase in chemical nutrients that causes excessive plant/algal growth and decay resulting in an anoxic condition in freshwater systems, the major consequence being algal blooms. For freshwater systems, phosphorus is considered the limiting nutrient for eutrophication. Typically, these are emissions of phosphorus compounds released during the production of materials. For this indicator, the increase in phosphorus mass per kg discharged to freshwater is calculated with Impact World+ characterization factors, which uses the model from Helmes et al. (2012). Advection, retention, and water use are considered when looking at the fate of phosphorus in freshwater. This indicator is reported in phosphate (PO4) equivalents.

Paper Can SL-PL-	Material 3.03	Manufacturing 0.007	Transportation 0.0041	EndOfLife 0.5928	UsePhase 0	Total
100mi	(83.39%)	(0.1932%)	(0.1128%)	(16.31%)	(0%)	3.64
Paper Can SR-PI-	Material 3.03	Manufacturing 0.007	Transportation 0.0041	EndOfLife 0.0138	UsePhase 0	Total
100mi	(99.19%)	(0.2298%)	(0.1341%)	(0.4507%)	(0%)	3.06
Paper Can SR-PI-	Material 3.03	Manufacturing 0.007	Transportation 0.041 (1.33%)	EndOfLife 0.0138	UsePhase 0	Total
1000mi	(98%)	(0.227%)		(0.4453%)	(0%)	3.09
Paper Can SR-PL-	Material 3.03	Manufacturing 0.007	Transportation 0.0041 (0.1128%)	EndOfLife 0.5916	UsePhase 0	Total
100mi	(83.41%)	(0.1932%)		(16.28%)	(0%)	3.63
Paper Can SR-PL-	Material 3.03	Manufacturing 0.007	Transportation 0.041 (1.12%)	EndOfLife 0.5916	UsePhase 0	Total
1000mi	(82.58%)	(0.1913%)		(16.12%)	(0%)	3.67
Paper Can SL-PR-	Material 3.03	Manufacturing 0.007	Transportation 0.0041 (0.1346%)	EndOfLife 0.003	UsePhase 0	Total
100mi	(99.54%)	(0.2306%)		(0.0971%)	(0%)	3.05
Paper Can SL-PR- 1000mi	Material 3.03 (98.35%)	Manufacturing 0.007 (0.2278%)	Transportation 0.041 (1.33%)	EndOfLife 0.003 (0.0959%)	UsePhase 0 (0%)	Total 3.08

Freshwater Eutrophication (kg PO4 eq.) by Life Cycle Phases

Freshwater Eutrophication Differences for each BOM compared to the reference

Paper Can SR-PI-	Paper Can SR-PI-	Paper Can SR-PL-	Paper Can SR-PL-	Paper Can SL-PR-	Paper Can SL-PR-
100mi	1000mi	100mi	1000mi	100mi	1000mi
0.579 kg PO ₄ eq.	0.5421 kg PO ₄ eq.	0.0011 kg PO ₄ eq.	0.0358 kg PO ₄ eq.	0.5898 kg PO ₄ eq.	0.5529 kg PO ₄ eq.

Mineral Resource Use (ton deprived)

This indicator is expressed in kg of deprived resource/kg of dissipated resource, uses the material competition scarcity index (MACSI) from de Bruille (2014) as a midpoint indicator, and is pulled from Impact World+. The factor represents the fraction of material needed by future users that are not able to find a reliable substitute for the mineral. The MACSI varies from 0% to 100%, with the higher numbers corresponding to more competition among users and takes into account the amount of material remaining, the rate of resource dissipation, and the rate of user adaptation. The MACSI essentially relates to the fraction of a given material's users that will not be able to adapt to depletion of the material by using another resource.

Paper Can SL-PL-	Material 18.67	Manufacturing 0.0084	Transportation 0.0301	EndOfLife 0.0222	UsePhase 0	Total
100mi	(99.68%)	(0.0448%)	(0.1606%)	(0.1187%)	(0%)	18.73
Paper Can SR-PI-	Material 18.67	Manufacturing 0.0084	Transportation 0.0301	EndOfLife 0.0585	UsePhase 0	Total
100mi	(99.48%)	(0.0447%)	(0.1602%)	(0.3118%)	(0%)	18.77
Paper Can SR-PI- 1000mi	Material 18.67 (98.07%)	Manufacturing 0.0084 (0.044%)	Transportation 0.3007 (1.58%)	EndOfLife 0.0585 (0.3073%)	UsePhase 0 (0%)	Total 19.04
Paper Can SR-PL-	Material 18.67	Manufacturing 0.0084	Transportation 0.0301	EndOfLife 0.0128	UsePhase 0	Total
100mi	(99.73%)	(0.0448%)	(0.1606%)	(0.0682%)	(0%)	18.72
Paper Can SR-PL- 1000mi	Material 18.67 (98.31%)	Manufacturing 0.0084 (0.0441%)	Transportation 0.3007 (1.58%)	EndOfLife 0.0128 (0.0673%)	UsePhase 0 (0%)	Total 18.99
Paper Can SL-PR-	Material 18.67	Manufacturing 0.0084	Transportation 0.0301	EndOfLife 0.0104	UsePhase 0	Total
100mi	(99.74%)	(0.0448%)	(0.1607%)	(0.0555%)	(0%)	18.72
Paper Can SL-PR- 1000mi	Material 18.67 (98.32%)	Manufacturing 0.0084 (0.0442%)	Transportation 0.3007 (1.58%)	EndOfLife 0.0104 (0.0547%)	UsePhase 0 (0%)	Total 18.99

Mineral Resource Use (ton deprived) by Life Cycle Phases

Mineral Resource Use Differences for each BOM compared to the reference

Paper Can SR-PI	Paper	Can	SR-PI-	Paper	Can	SR-PL-	Paper	Can	SR-PL-	Paper	Can	SL-PR-	Paper	Can	SL-PR-
100mi	1000mi			100mi			1000mi			100mi			1000mi		
0.0363 ton deprived	0.3069	ton de	prived	0.0095	ton de	prived	0.2612 1	on dep	orived	0.0118	ton de	prived	0.2588 t	ton de	orived

GWP (with CO₂ Uptake) (ton CO₂ eq.)

Global Warming Potential (GWP) with CO2 uptake considers the total quantity of greenhouse gasses (GHG) emitted throughout the life cycle reported in kilograms of CO2 equivalents. This calculation follows the IPCC Sixth Assessment Report (AR6) 2021 100a w/ CO2 Uptake method. It considers global warming potential for a 100-year timeframe. This indicator also accounts for carbon sequestration and biogenic carbon emissions.

Paper Can SL-PL-	Material 89.59	Manufacturing 0.6755 (0.4809%)	Transportation 1.39	EndOfLife 48.81	UsePhase 0	Total
100mi	(63.78%)		(0.9891%)	(34.75%)	(0%)	140.46
Paper Can SR-PI-	Material 89.59	Manufacturing 0.6755 (0.4792%)	Transportation 1.39	EndOfLife 49.3	UsePhase 0	Total
100mi	(63.56%)		(0.9857%)	(34.98%)	(0%)	140.96
Paper Can SR-PI-	Material 89.59	Manufacturing 0.6755 (0.4402%)	Transportation 13.89	EndOfLife 49.3	UsePhase 0	Total
1000mi	(58.38%)		(9.05%)	(32.13%)	(0%)	153.46
Paper Can SR-PL-	Material 89.59	Manufacturing 0.6755 (0.4822%)	Transportation 1.39	EndOfLife 48.43	UsePhase 0	Total
100mi	(63.95%)		(0.9918%)	(34.57%)	(0%)	140.09
Paper Can SR-PL-	Material 89.59	Manufacturing 0.6755 (0.4427%)	Transportation 13.89	EndOfLife 48.43	UsePhase 0	Total
1000mi	(58.71%)		(9.11%)	(31.74%)	(0%)	152.59
Paper Can SL-PR- 100mi	Material 89.59 (97.02%)	Manufacturing 0.6755 (0.7315%)	Transportation 1.39 (1.5%)	EndOfLife 0.6848 (0.7416%)	UsePhase 0 (0%)	Total 92.34
Paper Can SL-PR-	Material 89.59	Manufacturing 0.6755 (0.6443%)	Transportation 13.89	EndOfLife 0.6848	UsePhase 0	Total
1000mi	(85.45%)		(13.25%)	(0.6532%)	(0%)	104.84

Simple Indicators

Computed based on the US Region

Pap	er Ca	an	SR-PI-	Pap	er (Can	SR-PI-	Рар	er C	an	SR-PL-	Pap	er Can	SR-PL-	Рар	er Can SL-	PR-100mi	Pap	er Can	SL-PR-
100	mi			100	10mi			100	mi			100	Omi		48.1	13 ton CO ₂	eq.	100	umi	
0.4	933 ton	CO ₂	eq.	13 1	ton CO	2 eq .		0.3	775 ton	1 CO ₂	eq.	12.1	13 ton CO	₂ eq.		10.31	Passenger	35.6	2 ton CO	₂ eq.
	0.1056	Pa	issenger		2.78	Р	assenger		0.0808	B Pa	ssenger		2.6	Passenger	A	Vehicles	Driven		7.63	Passenger
æ	Vehicles	S	Driven	æ	Vehicl	es	Driven	æ	Vehicle	es	Driven	æ	Vehicles	Driven		Yearly		A	Vehicles	Driven
	Yearly				Yearly				Yearly				Yearly			189,830.1	7		Yearly	
	1,945.8	36			51,26	8.48			1,488.	91			47,833.7	1	a.	Kilometers	s Driven by		140,507.	55
a	Kilomet	ters	Driven		Kilome	eters	Driven		Kilome	eters	Driven	a	Kilometer	s Driven	(•)	Passenger	Vehicles		Kilometer	s Driven by
(•)	by	Pa	issenger	(•)	by	Р	assenger	(•)	by	Pa	ssenger	(•)	by	Passenger		Yearly		(•)	Passenge	r Vehicles
	Vehicle	s Yea	rly		Vehicl	es Yea	arly		Vehicle	es Yea	irly		Vehicles Y	'early	۵	20,499.13	Liters of		Yearly	
B	210.13	Lit	ters of	B	5,536	31	Liters of	B	160.78	B Lit	ters of	B	5,165.4	Liters of	U	Gasoline C	Consumed	۳ð	15,172.94	4 Liters of
U	Gasolin	e Co	nsumed	U	Gasoli	ne Co	onsumed	U	Gasolir	ne Co	nsumed	U	Gasoline	Consumed		1,247.1	Tree	U	Gasoline	Consumed
	12.78		Tree		336.8	1	Tree		9.78 Ti	ree So	eedlings		314.25	Tree	Y	Seedlings	Grown for		923.08	Tree
Y	Seedlin	gs	Grown	Y	Seedli	ngs	Grown	-	Grown	for 1	0 Years	Y	Seedlings	Grown		10 Years		Y	Seedlings	Grown for
	for 10 Y	/ears			for 10	Years	;	*	0.1797	7 Hec	tares of		for 10 Yea	irs		22.91 He	ectares of		10 Years	
								Ŧ	Forests	s Year	ly				Ŧ	Forests Ye	arly			

Freshwater Ecotoxicity (CTUe)

This indicator is a measure of the ecotoxicity impact of chemical releases to air, water, and land using aquatic toxicity factors and is calculated using the Impact World+ midpoint indicator with exclusion of long-term emissions. Impact World+ uses and adapts USEtox, a scientific consensus model, to calculate characterization factors for freshwater ecotoxicity. This indicator is reported in comparative toxic units (CTUe) per unit mass of chemical emitted. CTUe corresponds to the potentially affected fraction (PAF) of the species exposed in the ecosystem for a given time and water volume per unit mass of a chemical emitted.

Paper Can SL- PL-100mi	Material 28,856,145.93 (45.35%)	Manufacturing 221,683.39 (0.3484%)	Transportation 218,293.38 (0.3431%)	EndOfLife 34,331,841.45 (53.96%)	UsePhase 0 (0%)	Total 63,627,964.16
Paper Can SR- PI-100mi	Material 28,856,145.93 (93.93%)	Manufacturing 221,683.39 (0.7216%)	Transportation 218,293.38 (0.7106%)	EndOfLife 1,425,109.16 (4.64%)	UsePhase 0 (0%)	Total 30,721,231.87
Paper Can SR- PI-1000mi	Material 28,856,145.93 (88.28%)	Manufacturing 221,683.39 (0.6782%)	Transportation 2,182,933.83 (6.68%)	EndOfLife 1,425,109.16 (4.36%)	UsePhase 0 (0%)	Total 32,685,872.31
Paper Can SR- PL-100mi	Material 28,856,145.93 (86.84%)	Manufacturing 221,683.39 (0.6671%)	Transportation 218,293.38 (0.6569%)	EndOfLife 3,933,034.42 (11.84%)	UsePhase 0 (0%)	Total 33,229,157.13
Paper Can SR- PL-1000mi	Material 28,856,145.93 (81.99%)	Manufacturing 221,683.39 (0.6299%)	Transportation 2,182,933.83 (6.2%)	EndOfLife 3,933,034.42 (11.18%)	UsePhase 0 (0%)	Total 35,193,797.58
Paper Can SL- PR-100mi	Material 28,856,145.93 (46.41%)	Manufacturing 221,683.39 (0.3566%)	Transportation 218,293.38 (0.3511%)	EndOfLife 32,876,300.49 (52.88%)	UsePhase 0 (0%)	Total 62,172,423.2
Paper Can SL- PR-1000mi	Material 28,856,145.93 (44.99%)	Manufacturing 221,683.39 (0.3456%)	Transportation 2,182,933.83 (3.4%)	EndOfLife 32,876,300.49 (51.26%)	UsePhase 0 (0%)	Total 64,137,063.65

Freshwater Ecotoxicity (CTUe) by Life Cycle Phases

Freshwater Ecotoxicity Differences for each BOM compared to the reference

Paper 100mi	Can	SR-PI-	Paper 1000mi	Can	SR-PI-	Paper 100mi	Can	SR-PL-	Paper 1000mi	Can	SR-PL-	Paper 100mi	Can	SL-PR-	Paper 1000mi	Can	SL-PR-
32,906,7	732.29	CTUe	30,942,0	091.84	CTUe	30,398,	807.02	CTUe	28,434,1	66.58	CTUe	1,455,5	40.95	CTUe	509,099	.49 <mark>СТ</mark>	'Ue

Human Impact (Midpoint) (CTUh)

This is a midpoint indicator calculating the quantity of short-term environment emissions resulting in cancer & toxic non-cancer impacts to humans released throughout the life cycle. This midpoint indicator reports these metrics in terms of Comparative Toxic Units human (CTUh). This indicator is calculated using Impact World+, which uses and adapts USEtox to generate toxicity characterization factors. Inhalation of household and industrial indoor emissions and ingestion of pesticide residues from crops are considered. According to the ILCD (International Reference Life Cycle Data System) Handbook: Recommendations for Life Cycle Impact Assessment in the European context, "the compatibility between midpoint and endpoint recommendations is ensured since the midpoint indicator defined in USEtox as Comparative Toxic Units (CTUhuman) corresponds to cases of cancer and non cancer, whereas the severity factor reflects the Disability Adjusted Life Years per case.

Paper Can SL-PL- 100mi	Material 0.139 (94.73%)	Manufacturing (0.1272%)	0.00018674	Transportation (0.1362%)	0.0002	EndOfLife (5%)	0.0073	UsePhase (0%)	0	Total 0.1468
Paper Can SR-PI- 100mi	Material 0.139 (97.35%)	Manufacturing (0.1307%)	0.00018674	Transportation (0.14%)	0.0002	EndOfLife (2.38%)	0.0034	UsePhase (0%)	0	Total 0.1429
Paper Can SR-PI- 1000mi	Material 0.139 (95.94%)	Manufacturing (0.1288%)	0.00018674	Transportation (1.59%)	0.0023	EndOfLife (2.35%)	0.0034	UsePhase (0%)	0	Total 0.145
Paper Can SR-PL- 100mi	Material 0.139 (97.4%)	Manufacturing (0.1308%)	0.00018674	Transportation (0.14%)	0.0002	EndOfLife (2.33%)	0.0033	UsePhase (0%)	0	Total 0.1428
Paper Can SR-PL- 1000mi	Material 0.139 (95.99%)	Manufacturing (0.1289%)	0.00018674	Transportation (1.59%)	0.0023	EndOfLife (2.3%)	0.0033	UsePhase (0%)	0	Total 0.1449
Paper Can SL-PR- 100mi	Material 0.139 (96.64%)	Manufacturing (0.1297%)	0.00018674	Transportation (0.1389%)	0.0002	EndOfLife (3.09%)	0.0045	UsePhase (0%)	0	Total 0.1439
Paper Can SL-PR- 1000mi	Material 0.139 (95.25%)	Manufacturing (0.1279%)	0.00018674	Transportation (1.57%)	0.0023	EndOfLife (3.05%)	0.0045	UsePhase (0%)	0	Total 0.146

Human Impact (Midpoint) (CTUh) by Life Cycle Phases

Human Impact (Midpoint) Differences for each BOM compared to the reference

Paper Can SR-I 100mi	I- Paper 1000mi	Can	SR-PI-	Paper 100mi	Can	SR-PL-	Paper 1000mi	Can	SR-PL-	Paper 100mi	Can	SL-PR-	Paper 1000mi	Can	SL-PR-
0.0039 CTUh	0.0018	CTUh		0.004 C	TUh		0.0019	CTUh		0.0029	CTUh		0.00079	44 CTU	Jh

Input Package Bill of Material (BOM)

This section outlines the input given for the Life Cycle Analysis in the form of complete BOMs. For each component, the material, manufacturing process, number of occurrences, and mass is listed.

Paper Can SL-PL-100mi

BOM Classifications

BOM	3OM Name				/(Each)		Mfg	g. Reg	ion	Sal	es-U	se Region		Base U	nit
Paper	Can SL-PL-1	100mi		1000000			US			US				item co	ount
Catego	ory	SKU	Brand	Product	Туре		Status		Channel		Laun	ich Date		Retired Dat	te
NA			NA	NA			NA		NA		NA			NA	
Name	Ma	aterial	PCR %	PI	R %	Manufac Process	cturing	Mas Occu	s Per rrence	#		Transport	Con Typ	nponent e	EOL Recycling Potential
♥	Paper Can Steel Landfilled, Paper Landfilled									1		4 161 km	Can	Loose End	
~ •	Paper Can Steel Landfilled, Paper Landfilled (1 item count)									1					
	Steel Base Ste	eel	10 %		0 %			25.	23 g	1					0 %
✓ ■	Paper Composite Cylinder									1					
	Recycled Paperboar	Unbleache dKraft Paper	d 90 '	%	10 %			ź	27.1 g	1					0 %
	Kraft Ur Paper Kra	nbleached aft Paper	0 %		0 %			3.	9 g	1					0 %
	Aluminum Foil	Aluminum	0 %		0 %	Alumir Sheet I (0.2 to	num Rolling 6 mm)	().4 g	1					0 %
	HDPE Po Film (H	gh-Density Iyethylene DPE)	0 %		0 %	Film Extr	rusion	0.	5 g	1					0 %
	PET Po Film (Pl	lyethylene rephthalate ET)	0 %		0 %	Film Extr	rusion	0.	8 g	1					0 %
	PVA P AdhesiveA	olyvinyl cetate (PVA)	0 %		0 %			0	.3 g	1					3 %
••	SP (1 PPs per)									1					
	Item 2		0 %		0 %			C	g	1					0 %
~	TP (1 SPs per)									1					

Item 3	3	0 %	0 %		0 g	1			0 %
Paper Can	SR-PI-100mi								
BOM Classi	ifications								
BOM Name			Quantity(Each)	Mf	g. Region	Sales-	Use Region	Base U	Init
Paper Can SF	R-PI-100mi		1000000	US		US		item co	ount
Category	SKU	Brand	Product Type	Status	Channel	La	unch Date	Retired Dat	te
NA		NA	NA	NA	NA	NA	A	NA	
Name	Material	PCR %	PIR %	Manufacturing Process	Mass Per Occurrence	#	Transport	Component Type	EOL Recycling Potential
Paper Steel V III Recycl Paper Incine	Can led, rated					1	🖶 161 km	Can Loose End	
Paper Steel Recyc Paper Incine (1 count	r Can cled, r erated item t)					1			
Steel Base	Steel	10 %	0 %		25.23 g	1			100 %
Paper ✓ ■ Comp Cylinc	posite der					1			
Recyce Pape	cled Unbleache rboardKraft Pape	d 90 %	5 10 %		27.1 g	1			0 %
 Kraft Pape 	Unbleached r Kraft Paper	0 %	0 %		3.9 g	1			0 %
Alum Foil	^{iinum} Aluminum	0 %	0 %	Aluminum Sheet Rolling (0.2 to 6 mm)	0.4 g	1			0 %
HDPf Film	E High-Density Polyethylene (HDPE)	0 %	0 %	Film Extrusion	0.5 g	1			0 %
PET Film	Polyethylene Terephthalate (PET)	0 %	0 %	Film Extrusion	0.8 g	1			0 %
PVA Adhe	Polyvinyl esiveAcetate (PVA) 0 %	0 %		0.3 g	1			3 %
✓ ● SP PPs p	(1 per)					1			
Item 2	2	0 %	0 %		0 g	1			0 %
✓	(1 ber)					1			
Item 3	3	0 %	0 %		0 g	1			0 %

Paper Can SR-PI-1000mi

BOM Classifications

вом	3OM Name		Quantity(Each) M	fg. Region	Sales-	Use Region	Base U	Init
Paper	Can SR-PI-1000mi		1000000	U	5	US		item co	ount
Categ	ory SKU	Brand	Product Type	Status	Channel	Lau	inch Date	Retired Dat	ie
NA		NA	NA	NA	NA	NA		NA	
Name	e Material	PCR %	PIR %	Manufacturing Process	Mass Per Occurrence	#	Transport	Component Type	EOL Recycling Potential
∨	Paper Can Steel Recycled, Paper Incinerated					1	4 1,610 km	Can Loose End	
~	Paper Can Steel Recycled, Paper Incinerated (1 item count)					1			
	Steel Base Steel	10 %	0 %		25.23 g	1			100 %
~	Paper Composite Cylinder					1			
	Recycled Unbleach PaperboardKraft Pape	ed 90 % er	6 10 %		27.1 g	1			0 %
	Kraft Unbleached Paper Kraft Paper	0 %	0 %		3.9 g	1			0 %
	Aluminum Foil	0 %	0 %	Aluminum Sheet Rolling (0.2 to 6 mm)	0.4 g	1			0 %
	HDPE Film HDPE Film High-Density Polyethylene (HDPE)	0 %	0 %	Film Extrusion	0.5 g	1			0 %
	PET Polyethylene Film (PET)	0 %	0 %	Film Extrusion	0.8 g	1			0 %
	PVA Polyvinyl AdhesiveAcetate (PVA	A) 0 %	0 %		0.3 g	1			3 %
•	SP (1 PPs per)					1			
	Item 2	0 %	0 %		0 g	1			0 %
~	TP (1 SPs per)					1			
	Item 3	0 %	0 %		0 g	1			0 %

Paper Can SR-PL-100mi

BOM Name

Quantity(Each)

Mfg. Region

Sales-Use Region

Base Unit

Paper Ca	n SR-PL-100mi		1000000	US	;	US		item co	ount
Category	sku	Brand	Product Type	Status	Channel	Lai	unch Date	Retired Dat	e
NA		NA	NA	NA	NA	NA	L	NA	
Name	Material	PCR %	PIR %	Manufacturing Process	Mass Per Occurrence	#	Transport	Component Type	EOL Recycling Potential
Pa Ca V II Re Pa Lat	per n Steel cycled, per ndfilled					1	4 161 km	Can Loose End	
Pa Ca Re V • Pa La (1 cc	aper an Steel ecycled, aper indfilled item punt)					1			
Ba	eel Steel se	10 %	0 %		25.23 g	1			100 %
Pa ✓■ Cc Cy	per omposite linder					1			
■ Re Pa	ecycled Unbleach aperboardKraft Pape	ed 90 % er	5 10 %		27.1 g	1			0 %
■ Ki Pa	raft Unbleached aper Kraft Paper	0 %	0 %		3.9 g	1			0 %
■ A Fo	luminum Aluminum pil	0 %	0 %	Aluminum Sheet Rolling (0.2 to 6 mm)	0.4 g	1			0 %
■ H Fi	DPE High-Density Polyethylene (HDPE)	0 %	0 %	Film Extrusion	0.5 g	1			0 %
Fi	ET Polyethylene Terephthalate Im (PET)	0 %	0 %	Film Extrusion	0.8 g	1			0 %
■ P' A	VA Polyvinyl dhesiveAcetate (PVA	0 %	0 %		0.3 g	1			3 %
✓ ● SF PF	P (1 Ps per)					1			
🔳 lte	em 2	0 %	0 %		0 g	1			0 %
✓ 🛄 ^{TF} SF	P (1 Ps per)					1			
Ite	em 3	0 %	0 %		0 g	1			0 %

Paper Can SR-PL-1000mi

BOM Classifications

вом	Name		Quantity(Each) N	lfg. Region	Sales	-Use Region	Base L	Jnit
Paper	Can SR-PL-1000mi		1000000	U	S	US		item c	ount
Categ	jory SKU	Brand	Product Type	Status	Channel	Lau	inch Date	Retired Dat	te
NA		NA	NA	NA	NA	NA		NA	
Name	e Material	PCR %	PIR %	Manufacturing Process	Mass Per Occurrence	#	Transport	Component Type	EOL Recycling Potential
∨	Paper Can Steel Recycled, Paper Landfilled					1	4 1,610 km	Can Loose End	
~	Paper Can Steel Recycled, Paper Landfilled (1 item count)					1			
	Steel Base Steel	10 %	0 %		25.23 g	1			100 %
~	Paper Composite Cylinder					1			
	Recycled Unbleach PaperboardKraft Pape	ed 90 % er	10 %		27.1 g	1			0 %
	Kraft Unbleached Paper Kraft Paper	0 %	0 %		3.9 g	1			0 %
	Aluminum Foil	0 %	0 %	Aluminum Sheet Rolling (0.2 to 6 mm)	0.4 g	1			0 %
	HDPE Film HDPE Film High-Density Polyethylene (HDPE)	0 %	0 %	Film Extrusion	0.5 g	1			0 %
	PET Polyethylene Film (PET)	e 0 %	0 %	Film Extrusion	0.8 g	1			0 %
	PVA Polyvinyl AdhesiveAcetate (PVA	A) 0 %	0 %		0.3 g	1			3 %
~ •	SP (1 PPs per)					1			
	Item 2	0 %	0 %		0 g	1			0 %
~	TP (1 SPs per)					1			
	Item 3	0 %	0 %		0 g	1			0 %

Paper Can SL-PR-100mi

BOM Name

Quantity(Each)

Mfg. Region

Sales-Use Region

Base Unit

Paper Ca	an SL-PR-100mi		1000000	US	;	US		item co	ount
Categor	y SKU	Brand	Product Type	Status	Channel	La	unch Date	Retired Dat	e
NA		NA	NA	NA	NA	NA	A	NA	
Name	Material	PCR %	PIR %	Manufacturing Process	Mass Per Occurrence	#	Transport	Component Type	EOL Recycling Potential
Pa St ✔ 👪 La Pa Re	aper Can reel andfilled, aper ecycled					1	4 161 km	Can Loose End	
P S ↓ P R (' c	laper Can teel andfilled, laper lecycled 1 item ount)					1			
B	teel Steel ase	10 %	0 %		25.23 g	1			0 %
Pa ✓■ C C	aper omposite ylinder					1			
F F	Recycled Unbleach PaperboardKraft Pape	ed 90 % er	6 10 %		27.1 g	1			100 %
■ ^k F	Kraft Unbleached Paper Kraft Paper	0 %	0 %		3.9 g	1			100 %
■ ^A F	Aluminum Foil	0 %	0 %	Aluminum Sheet Rolling (0.2 to 6 mm)	0.4 g	1			0 %
■ ^H F	High-Density HDPE Polyethylene (HDPE)	0 %	0 %	Film Extrusion	0.5 g	1			0 %
■ F	PET Polyethylene Terephthalate (PET) (PET)	e 0 %	0 %	Film Extrusion	0.8 g	1			0 %
F A	PVA Polyvinyl AdhesiveAcetate (PVA	A) 0 %	0 %		0.3 g	1			3 %
~ ● S	P (1 'Ps per)					1			
It	em 2	0 %	0 %		0 g	1			0 %
~ <u>∎</u> ^T S	P (1 Ps per)					1			
It	em 3	0 %	0 %		0 g	1			0 %

Paper Can SL-PR-1000mi

BOM Classifications

вом	Name		Quantity(Eac	h) N	1fg. Region	Sales-	-Use Region	Base L	Jnit
Paper	Can SL-PR-1000m		1000000	U	S	US		item c	ount
Categ	ory SKU	Brand	Product Type	Status	Channel	Lau	inch Date	Retired Dat	te
NA		NA	NA	NA	NA	NA		NA	
Name	Material	PCR %	PIR %	Manufacturing Process	Mass Per Occurrence	#	Transport	Component Type	EOL Recycling Potential
∨	Paper Can Steel Landfilled, Paper Recycled					1	4 1,610 km	Can Loose End	
~	Paper Can Steel Landfilled, Paper Recycled (1 item count)					1			
	Steel Base	10 %	0 %		25.23 g	1			0 %
~	Paper Composite Cylinder					1			
	Recycled Unble PaperboardKraft	eached 90 Paper 90	0 % 10 %		27.1 g	1			100 %
	Kraft Unbleach Paper Kraft Pap	ed 0 %	0 %		3.9 g	1			100 %
	Aluminum Foil	ium 0 S	% 0%	Aluminum Sheet Rolling (0.2 to 6 mm)	0.4 g	1			0 %
	HDPE Film HDPE Polyethyl (HDPE)	nsity ene 0 %	0 %	Film Extrusion	0.5 g	1			0 %
	PET Polyethyl Film (PET)	ene alate 0 %	0 %	Film Extrusion	0.8 g	1			0 %
	PVA Polyviny AdhesiveAcetate	'l 0 % (PVA)	5 0 %		0.3 g	1			3 %
•	SP (1 PPs per)					1			
	Item 2	0 %	0 %		0 g	1			0 %
~	TP (1 SPs per)					1			
	Item 3	0 %	0 %		0 g	1			0 %

Name	Unit Of Measure	Quantity	Total Package Weight/Unit Product Ratio	Primary Package Cube Efficiency %	Secondary Package Cube Efficiency %	Tertiary Package (Pallet) Cube Efficiency %	Primary Package Recyclable Score	EOL Recycling Potential	EOL Recycling Potential (%)	EOL Waste Potential	EOL Waste Potential (%)	EOL Total Mass
Paper Can SL-PL- 100mi	Each	1,000,000	58.23 g/item count	0	0	0	5	9 kg	0.0155	58.22 ton	99.98	58.23 ton
Paper Can SR-PI- 100mi	Each	1,000,000	58.23 g/item count	0	0	0	5	25.24 ton	43.34	32.99 ton	56.66	58.23 ton
Paper Can SR-PI- 1000mi	Each	1,000,000	58.23 g/item count	0	0	0	5	25.24 ton	43.34	32.99 ton	56.66	58.23 ton
Paper Can SR-PL- 100mi	Each	1,000,000	58.23 g/item count	0	0	0	5	25.24 ton	43.34	32.99 ton	56.66	58.23 ton
Paper Can SR-PL- 1000mi	Each	1,000,000	58.23 g/item count	0	0	0	5	25.24 ton	43.34	32.99 ton	56.66	58.23 ton
Paper Can SL-PR- 100mi	Each	1,000,000	58.23 g/item count	0	0	0	5	31.01 ton	53.25	27.22 ton	46.75	58.23 ton
Paper Can SL-PR- 1000mi	Each	1,000,000	58.23 g/item count	0	0	0	5	31.01 ton	53.25	27.22 ton	46.75	58.23 ton

Component EOL Percentage Breakdown

Paper Can SL-PL-100mi

Name	EOL Recycling Potential %	EOL Waste to Potential %	Energy EOL Composting %	Potential EOL Landfill Potential %
Paper Can ✔ IIIIEd, Landfilled	Steel Paper			
✓ ● Paper Can Landfilled, Landfilled (1 count)	Steel Paper item			
Steel Base	0 %	0 %	0 %	100 %
✓ ■ Paper Com Cylinder	nposite <mark>0 %</mark>	0 %	0 %	0 %
Recycled Paperbo	oard 0 %	0 %	0 %	100 %

Compare BOM Details

Kraft Paper	0 %	0 %	0 %	100 %
Aluminum Foil	0 %	0 %	0 %	100 %
HDPE Film	0 %	0 %	0 %	100 %
PET Film	0 %	0 %	0 %	100 %
PVA Adhesive	3 %	19 %	0 %	78 %
 ✓ ● SP (1 PPs per) 				
Item 2	0 %	0 %	0 %	0 %
✓ III (1 SPs per)				
Item 3	0 %	0 %	0 %	0 %

Paper Can SR-PI-100mi

Name	EOL Recycling Potential %	EOL Waste Potential %	to Energy	EOL Composting %	Potential EOL Landfill Potential %
Paper Can Ste Recycled, Paper Incinerated	el er				
Paper Can Ste ✓ ● Recycled, Paper Incinerated (1 iter count)	el er m				
Steel Base	100 %	0 %		0 %	0 %
✓ Paper Composit Cylinder Cylinder Composit	te _{0%}	0 %		0 %	0 %
Recycled Paperboard	0 %	100 %		0 %	0 %
Kraft Paper	0 %	100 %		0 %	0 %
Aluminum Foil	0 %	100 %		0 %	0 %
HDPE Film	0 %	100 %		0 %	0 %
PET Film	0 %	100 %		0 %	0 %
PVA Adhesive	3 %	19 %		0 %	78 %
✓ ● SP (1 PPs per)					
Item 2	0 %	0 %		0 %	0 %
✓ TP (1 SPs per)					
Item 3	0 %	0 %		0 %	0 %

Paper Can SR-PI-1000mi

Name	EOL Recycling Potential %	EOL Waste to Potential %	Energy EOL Co %	omposting Potential	EOL Landfill Potential %
Paper Can Ster Recycled, Paper Incinerated	el er				
✓ ● Paper Can Ste Recycled, Paper Incinerated (1 iter count)	el er m				
Steel Base	100 %	0 %	0 %		0 %
✓ Paper Composit Cylinder	te _{0 %}	0 %	0 %		0 %
Recycled Paperboard	0 %	100 %	0 %		0 %
Kraft Paper	0 %	100 %	0 %		0 %
Aluminum Foil	0 %	100 %	0 %		0 %

HDPE Film	0 %	100 %	0 %	0 %
PET Film	0 %	100 %	0 %	0 %
PVA Adhesive	3 %	19 %	0 %	78 %
✓ ● SP (1 PPs per)				
Item 2	0 %	0 %	0 %	0 %
✓ 🛄 TP (1 SPs per)				
Item 3	0 %	0 %	0 %	0 %

Paper Can SR-PL-100mi

Name	EOL Recycling Potential %	EOL Waste to Potential %	Energy EOL Composting Potent	ial EOL Landfill Potential %
Paper Can Ste Recycled, Paper Landfilled	el er			
Paper Can Ste	el er m			
Steel Base	100 %	0 %	0 %	0 %
✓ Paper Composition Cylinder Cylinder Composition	te 0 %	0 %	0 %	0 %
Recycled Paperboard	0 %	0 %	0 %	100 %
Kraft Paper	0 %	0 %	0 %	100 %
Aluminum Foil	0 %	0 %	0 %	100 %
HDPE Film	0 %	0 %	0 %	100 %
PET Film	0 %	0 %	0 %	100 %
PVA Adhesive	3 %	19 %	0 %	78 %
✓ ✓ SP (1 PPs per)				
Item 2	0 %	0 %	0 %	0 %
✓ I TP (1 SPs per)				
Item 3	0 %	0 %	0 %	0 %

Paper Can SR-PL-1000mi

Name	EOL Recycling Potential %	EOL Waste to E Potential %	nergy EOL Composting Potent %	al EOL Landfill Potential %
Paper Can Stee Recycled, Paper Landfilled	el er			
✓ ● Paper Can Stee Recycled, Pape Landfilled (1 iter count)	el er m			
Steel Base	100 %	0 %	0 %	0 %
✓ ■ Paper Composit Cylinder	^e 0 %	0 %	0 %	0 %
Recycled Paperboard	0 %	0 %	0 %	100 %
Kraft Paper	0 %	0 %	0 %	100 %
Aluminum Foil	0 %	0 %	0 %	100 %
HDPE Film	0 %	0 %	0 %	100 %
PET Film	0 %	0 %	0 %	100 %

PVA Adhesive	3 %	19 %	0 %	78 %			
 ✓ ● SP (1 PPs per) 							
Item 2	0 %	0 %	0 %	0 %			
✓ 🛄 TP (1 SPs per)							
Item 3	0 %	0 %	0 %	0 %			

Paper Can SL-PR-100mi

Name	EOL Recycling Potential %	EOL Waste to Energy Potential %	y EOL Composting Potential %	EOL Landfill Potential %
Paper Can Stee Landfilled, Paper Recycled	el er			
Paper Can Stee ✓ ● Landfilled, Pape Recycled (1 item count)	el er)			
Steel Base	0 %	0 %	0 %	100 %
✓ ■ Paper Composite Cylinder	e _{0 %}	0 %	0 %	0 %
Recycled Paperboard	100 %	0 %	0 %	0 %
Kraft Paper	100 %	0 %	0 %	0 %
Aluminum Foil	0 %	0 %	0 %	100 %
HDPE Film	0 %	0 %	0 %	100 %
PET Film	0 %	0 %	0 %	100 %
PVA Adhesive	3 %	19 %	0 %	78 %
✓				
Item 2	0 %	0 %	0 %	0 %
✓ 🛄 TP (1 SPs per)				
Item 3	0 %	0 %	0 %	0 %

Paper Can SL-PR-1000mi

Name	EOL Recycling Potential %	EOL Waste to Ener Potential %	gy EOL Composting Potentia %	I EOL Landfill Potential %
Paper Can Ste Landfilled, Pap Recycled	er			
Paper Can Ste ✓ ● Landfilled, Pap Recycled (1 item coun	eel er t)			
Steel Base	0 %	0 %	0 %	100 %
✓ ■ Paper Composi Cylinder	te _{0 %}	0 %	0 %	0 %
Recycled Paperboard	100 %	0 %	0 %	0 %
Kraft Paper	100 %	0 %	0 %	0 %
Aluminum Foil	0 %	0 %	0 %	100 %
HDPE Film	0 %	0 %	0 %	100 %
PET Film	0 %	0 %	0 %	100 %
PVA Adhesive	3 %	19 %	0 %	78 %
✓ ✓ ● SP (1 PPs per)				
Item 2	0 %	0 %	0 %	0 %

✓ TP (1 SPs per)				
Item 3	0 %	0 %	0 %	0 %

Material Utilization Details

This section is used to determine the total quantities of various materials within the BOM. The total mass per packaging or product system is added up as well as the total mass of all of the packaging or product systems in this comparison. The equivalency comparison considers different pallet efficiencies and calculates the total mass of packaging or product that is being considered in the analysis.

Material	PCR %	Paper Can S PL-100mi	SL-Paper Can S Pl-100mi	SR-Paper Can Pl-1000mi	SR-Paper Can S PL-100mi	SR-Paper Can S PL-1000mi	SR-Paper Can PR-100mi	SL-Paper Can SL- PR-1000mi
Steel	10 %	25.23 ton	25.23 ton	25.23 ton	25.23 ton	25.23 ton	25.23 ton	25.23 ton
Unbleached Kra Paper	aft90 %	27.1 ton	27.1 ton	27.1 ton	27.1 ton	27.1 ton	27.1 ton	27.1 ton
Unbleached Kra Paper	aft0 %	3.9 ton	3.9 ton	3.9 ton	3.9 ton	3.9 ton	3.9 ton	3.9 ton
Aluminum	0 %	400 kg	400 kg	400 kg	400 kg	400 kg	400 kg	400 kg
High-Density Polyethylene (HDPE)	0 %	500 kg	500 kg	500 kg	500 kg	500 kg	500 kg	500 kg
Polyethylene Terephthalate (PET)	0 %	800 kg	800 kg	800 kg	800 kg	800 kg	800 kg	800 kg
Polyvinyl Aceta (PVA)	te0 %	300 kg	300 kg	300 kg	300 kg	300 kg	300 kg	300 kg
Total		58.23 ton	58.23 ton	58.23 ton	58.23 ton	58.23 ton	58.23 ton	58.23 ton

EcoScore Module

This section provides a bigger picture sustainability analysis comparing various products/packages and where they fall on the chart. This allows you to visualize how these differing products are aligning with your company $\hat{a} \in \mathbb{N}^{3}$ sustainability goals.

Overview

Normalized values rank each BOM's attribute to a 0-10 scale. A lower score is better.

Attribute Name	Paper Can SL- PL-100mi (Reference BOM)	Paper Can SR- PI-100mi	Paper Can SR- PI-1000mi	
Paper Can SR-	Paper Can SR-	Paper Can SL-	Paper Can SL-	
PL-100mi	PL-1000mi	PR-100mi	PR-1000mi	
	Actual	Actual	Actual	
Actual	Actual	Actual	Actual	
Fossil Fuel Use	1,176.17	1,162.46	1,353.3	
(GJ deprived)	Ref.	- 1.17%	+15.06%	
1,168.22	1,359.06	1,163.35	1,354.19	
- 0.6764%	+ 15.55%	- 1.09%	+ 15.14%	
Freshwater Ecotoxicity (CTUe)	63,627,964.16 Ref.	30,721,231.87 - 51.72%	32,685,872.31 - 48.63%	
33,229,157.13	35,193,797.58	62,172,423.2	64,137,063.65	
- 47.78%	- 44.69%	- 2.29%	+0.8001%	
Freshwater Eutrophication (kg PO4 eq.)	3.64 Ref.	3.06 - 15.93%	3.09 - 14.91%	
3.63	3.67	3.05	3.08	
-0.0309%	+ 0.9841%	- 16.22%	- 15.21%	

GWP (ton CO2	137.36	104.98	117.48
eq.)	Ref.	- 23.57%	- 14.47%
136.98	149.49	101.62	114.12
- 0.2735%	+8.83%	- 26.02%	- 16.92%
GWP (with CO2 Uptake) (ton CO2 eq.)	140.46 Ref.	140.96 +0.3512%	153.46 + 9.25%
-0.2687%	+8.63%	- 34.26 %	- 25.36 %
Mineral Resource Use (ton deprived)	18.73 Ref.	18.77 + 0.1937%	19.04 + 1.64%
18.72	18.99	18.72	18.99
- 0.0505%	+1.39%	- 0.0632%	+ 1.38%
Water Consumption (with Scarcity) (m3 world-eq)	32,923.32 Ref.	32,823.18 - 0.3042%	33,458.78 + 1.63%
32,638.51	33,274.12	32,542.01	33,177.61
- 0.8651%	+1.07%	- 1.16%	+ 0.7724%

Notes

Packaged Product Shelf Life

Packaged Product Shelf Life value taken from Primary Package

Appendix of Sustainable Packaging Attributes that can be used in SCORE

Bio-Renewable Content	Refers to the percentage of bio-based content contained in the Material. This percentage can vary from 0% to 100%. Not all materials will have bio-based content. Primarily paper and plastics will have this content.
Certified Content	Refers to Material sources that have been certified by third party certification programs deemed relevant by the COMPASS user. The definition of 'Certified' varies by user. A wide range of certification programs exist, and COMPASS does not provide guidance on which of these programs may be relevant to users' decision-making. Prior to data input, users are encouraged to create a list of which certification programs they support, and then use this list as the basis for data entry. For example, forest product certification programs that may be of interest to users include the Forest Stewardship Council (FSC), Pan European Forest Council (PEFC) or Sustainable Forestry Initiative (SFI). The percent certified range is between 0% to 100%. Note: %CERTIFIED is a user specified attribute and does not impact the life cycle impact assessment of a package or packaging system or product.
Chain of Custody Known	The linked set of organizations, from point of harvest or extraction to point of purchase, that have held legal ownership or physical control of raw materials or recycled materials, used in packaging constituents, packaging components, or packaging systems. EcoImpact asks how much of the Chain of Custody is known for the component. A complete chain of custody is measured by a value of 100%. This means that each party in the supply chain is under contractual obligation and is able to disclose proof of their material source(s) through purchasing agreements, inventory records, etc.
Damage Rate	Damage rate measures the frequency a component is damaged during transportation, with the goal of transporting the product to its destination. Damage rate is entered on each component and is rolled up at each package and at the packaging system level or product level.
EOL Waste Potential	This is the potential for the package/product to be either landfilled, incinerated or composted at end of life based on the current municipal waste infrastructure in the selected region.
EPR Fees	EPR Fees are calculated for manufacturers based on a cost per kg of material produced. Ecolmpact calculates the total cost for Packages and Packaging Systems or Product based on entered in cost per kg of material.
Fossil Fuel Use	This indicator considers the total quantity of fossil fuel consumed throughout the life cycle reported in megajoules (MJ) equivalents deprived/kg dissipated, which is based on an extraction-consumption-competition-adaptation approach. This indicator uses the Impact World+ method, uses the primary energy content, and assumes fossil resources mainly used for energy purposes. Fossil fuels include coal, petroleum, and natural gas.
Freshwater Ecotoxicity	This indicator is a measure of the ecotoxicity impact of chemical releases to air, water, and land using aquatic toxicity factors and is calculated using the Impact World+ midpoint indicator with exclusion of long-term emissions. Impact World+ uses and adapts USEtox, a scientific consensus model, to calculate characterization factors for freshwater ecotoxicity. This indicator is reported in comparative toxic units (CTUe) per unit mass of chemical emitted. CTUe corresponds to the potentially affected fraction (PAF) of the species exposed in the ecosystem for a given time and water volume per unit mass of a chemical emitted.
Freshwater Eutrophication	Eutrophication is the abnormal increase in chemical nutrients that causes excessive plant/algal growth and decay resulting in an anoxic condition in freshwater systems, the major consequence being algal blooms. For freshwater systems, phosphorus is considered the limiting nutrient for eutrophication. Typically, these are emissions of phosphorus compounds released during the production of materials. For this indicator, the increase in phosphorus mass per kg discharged to freshwater is calculated with Impact World+ characterization factors, which uses the model from Helmes et al. (2012). Advection, retention, and water use are considered when looking at the fate of phosphorus in freshwater. This indicator is reported in phosphate (PO4) equivalents.
GWP	Global Warming Potential (GWP) considers the total quantity of greenhouse gasses (GHG) emitted throughout the life cycle reported in kilograms of CO2 equivalents. This calculation follows the IPCC Sixth Assessment Report (AR6) 2021 100a w/o CO2 Uptake method and considers climate feedback loops. It considers global warming potential for a 100-year timeframe.
GWP (with CO2 Uptake)	Global Warming Potential (GWP) with CO2 uptake considers the total quantity of greenhouse gasses (GHG) emitted throughout the life cycle reported in kilograms of CO2 equivalents. This calculation follows the IPCC Sixth Assessment Report (AR6) 2021 100a w/ CO2 Uptake method. It considers global warming potential for a 100-year timeframe. This indicator also accounts for carbon sequestration and biogenic carbon emissions.
Material Scrap Rate	Percentage of material scrap of a manufacturing process. Default percentages are pulled from industry average processes. This value can be edited to reflect improved efficiency or yield of manufacturing process. Changing this value affects the LCA of material, manufacturing, and inbound transportation impact. Only available for components with one manufacturing process per material.

Mineral Resource Use	This indicator is expressed in kg of deprived resource/kg of dissipated resource, uses the material competition scarcity index (MACSI) from de Bruille (2014) as a midpoint indicator, and is pulled from Impact World+. The factor represents the fraction of material needed by future users that are not able to find a reliable substitute for the mineral. The MACSI varies from 0% to 100%, with the higher numbers corresponding to more competition among users and takes into account the amount of material remaining, the rate of resource dissipation, and the rate of user adaptation. The MACSI essentially relates to the fraction of a given material's users that will not be able to adapt to depletion of the material by using another resource.
Packaged Product Shelf Life	The ratio of a product's shelf life in packaging to a product's shelf life without packaging. Measure the length of time a product in packaging is suitable for sale compared to a product not in packaging. Compare only same product types in same packaging types. This metric does not apply to products which do not have a clearly defined shelf life. Do not take and compare measures of different types of products in the same types of packaging or of same types of products in different types of packaging.
Packaging Recovery Rate	The mass fraction or absolute mass of packaging recovered from all sources (commercial and residential) based on relevant waste management statistics. Determine if packaging conforms to the criteria for recoverability as per the relevant standards above. Include disclosure of material aspects of the package/product that would preclude recovery, e.g. color, material combinations, or coatings. If criteria are fulfilled, express total recovery rate as % of total packaging weight put on the market that is effectively recovered and provide the breakdown per practiced recovery option. Material Recycling: measure each type of packaging produced and/or used for which national waste management recycling rates exist. Note that depending upon the packaging (type, shape, size, color) true recycling rates might not coincide with national recycling rates for specific material or packaging category. Composting: measure each type of packaging produced and/or used for which national waste management industrial composting rates exist. Note that in many regions the rate of composted organic waste management industrial composted packaging waste due to lack of acceptance. Energy Recovery: If packaging is deemed to have energy recovery value and appropriate infrastructure exists, use national waste management statistics. If data is available, measure by material type. Packaging going to final disposal and nonrecovered littering is implicitly calculated from the recovery rate and does not need to be measured separately.
Packaging Reuse Rate	The number of times packaging accomplishes the same use, rotation, or trip for which it was conceived and designed within its life cycle. Determine if packaging conforms to definition of reusability per EN 13429 and ISO/CD 18603. If packaging is deemed reusable per referenced standards and guidelines, include all reused packaging components or packaging units. This metric can be used for primary, secondary, and tertiary packaging. In cases where several packaging levels are being reused, their individual rates should be reported separately and not be cumulated.
Packaging To Product Weight	Packaging to Product Weight Ratio: The ratio of the weight of all packaging material used compared to the weight of the product or functional unit delivered. This is automatically calculated in EcoImpact.
Post Consumer Recycled Content (PCR)	This is the percentage of post-consumer recycled content contained in the Material as defined by ISO 14021. % PCR for materials usually range between 0% to 100%. PCR is not available for all materials.
Post Industrial Recycled Content (PIR)	Post Industrial waste in the form of scrap, rejects etc that is collected from industries and used as recycled content in a new product/package.
Primary Package Cube Efficiency	Ratio of Product volume and Primary package volume. This shows how much empty or head space is there in the primary package. A higher % denotes more efficient use of the Primary package volume and reduced empty space.
Primary Package MCI (0-1)	This is the material circularity index calculated for the primary package.
Primary Package Recyclable SCORE (0-5)	0 - Contaminant: Contaminates the recycling stream 1 - Not Accepted: Not accepted by recycling plants 2 - Little: Very little acceptance but is trending towards becoming more acceptable 3 - Limited: Has a limited acceptance 4 - Becoming Widely: In process of being widely accepted 5 - Widely Accepted
Secondary Package Cube Efficiency	Ratio of total Product Volume in secondary package and Secondary package volume. This shows how much of the secondary package volume is occupied by the product. A higher % denotes more efficient use of Secondary package and reduced empty space.
Secondary Package Recyclable SCORE (0-5)	0 - Contaminant: Contaminates the recycling stream 1 - Not Accepted: Not accepted by recycling plants 2 -Little: Very little acceptance but is trending towards becoming more acceptable 3 - Limited: Has a limited acceptance 4 - Becoming Widely: In process of being widely accepted 5 - Widely Accepted
Single Use Plastic	Single Use Plastic

Tertiary Package Cube Efficiency Ratio of total Product Volume on Pallet and Pallet Volume. This shows how much of the tertiary package volume is

	occupied by the product. A higher % denotes more efficient palletization and reduced empty space.
Total Cost of Packaging	The total cost of all materials, energy, equipment and direct labor used during the sourcing of raw, recycled and reused materials and the production, filling, transport and/or disposal of packaging materials, packaging components or units of packaging.
Water Consumption (with Scarcity)	This indicator considers the relative available water remaining per area in a watershed after the demand of humans, aquatic ecosystems, and manufacturing process has been met, compared to the world average. The AWARE method is used to calculate the water scarcity footprint, which looks at the potential to deprive another freshwater user by consuming freshwater in a given region. The water scarcity footprint is the water consumption inventory multiplied by a characterization factor, which is based on the availability and demand of freshwater in a given region. The characterization factors have a range of 0.1 to 100, with higher numbers associated with more water-scarce regions, and are dimensionless (m3 world eq./m3). The water scarcity footprint results are typically reported in m3 world-eq. but may be reported in liters world-eq. if there is a small quantity of water being considered in the analysis by EcoImpact-COMPASS.
Weight Reduction	Packaging weight reduction can be calculated as the difference between the immediate, previous, and present packaging design. For environmental relevance, packaging weight reduction should be communicated by material category. Sometimes when package/products are light-weighted, this can require other parts of the packaging system (e.g. secondary packaging) to increase in weight to protect a thinner, more fragile part of the package/product. These weight increases and reductions should be clearly communicated, considered, and quantified.